

Iron $K\alpha$ line modeling and possible constraints on EoS of NS

René Šprňa

August 2024, Warsaw

Brainstorming Workshop

Outline

- 1. Iron line observation
- 2. Specifying the source LMXB with NS
- 3. Iron emission line and the model
- 4. Results and conclusion

Accretion -> iron line

Observed iron lines

r_{in} -> r_{ms}

To estimate spin and inclinaiton

LMXB with NS Around 200 sources

Roche lobe

Neutron star

Accretion disc

Donor star (with mass smaller than Sun)

figure taken from the site httpchandra.harvard.edu

Observed spectrum of LMXB

(Cackett et al. 2008)

Observed spectrum of LMXB – Iron Kα line

(Cackett et al. 2008)

Observed spectrum of LMXB – Iron K α line

- About 80% of LMXB show iron line signature
- Often broad (3 9 keV) asymmetric spectral profile
- Spectral profile fitting is important to estimate inner edge radius of the disc
- Iron line is the most dominant emission line in all x-ray sources

Why iron line?

- Iron abudance × fluorescence yield = highest among all elements
- The treshold for photoeletric absorbtion by neutral iron is 7.1 keV high energy (X-ray) seed photons needed hot corona

- Fe I-XVI ≈ 6.4 keV
- Fe XXIV-XXV $\approx 6.7 \text{ keV}$
- Fe XXVI ≈ 7 keV

General idea:

- presence of hot corona emitting high energy photons
- corona illuminates cold disc -> iron line emission
- usually the presence of neutron star is ignored

General idea:

- presence of hot corona emitting high energy photons
- corona illuminates cold disc -> iron line emission
- usually the presence of neutron star is ignored

My assumptions:

spin axis

NS

– weak magnetic field ($B \lesssim 10^8 \, {
m G}$)

- disc ends at marginally stable orbit
- matter accretes onto the the NS and spreads over the surface from the equator toward the poles
- iron line is emitted from NS surface

 $R_{\rm ISCO}$ Disk – geometricly thin, optically thick, $\Omega_{\rm K} = \sqrt{\frac{M}{r^3}}$

How to model the line E_{e} distant observer null geodesic source invariant Raytracing: -> code LSD: $\frac{I(E)}{E^3} \Rightarrow I_0(E_0) = g^3 I_e(E_e)$ $\oint_{g=\frac{E_0}{E_e}} = \frac{g_{\mu\alpha} u_0^{\mu} p^{\alpha}}{g_{\nu\beta} u_e^{\nu} p^{\beta}}$ time-reversed integration of Carter's equations - Schwarzschild - Kerr 4-velocity and geometry: - Schwarzschild $g_{\mu\nu}u_{\rm e}^{\mu}u_{\rm e}^{\nu}=-1$ - Hartle-Thorne

Example of frequency shift map image

Iron Kα line profile - Gaussian

$$F_{\rm o}(E_{\rm o}) = \int_{\Delta\Pi} g^3 I_{\rm e}(E_{\rm e}) f(E_{\rm e}, \boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\omega}$$

Relativistic effects on line profile

Spectral profile of the iron $K\alpha$ line

Local

Spectral profile of the iron $K\alpha$ line

Observed

Components of the system

Components of the system

Disc emission – comparison

Pretty good

Disc local emissivity:

$$I_{\rm e} = \alpha_1 r^q$$

When not specified, the other parameters are fixed at:

$$r_i = 10 r_s$$
$$r_o = 100 r_s$$
$$i = 30^\circ$$
$$q = -2$$

- geometricly thin
- optically thick
- Keplerian

1.3

NS emission – comparison

Pretty good

LSD

ÖZEL, F. & PSALTIS, D. Astrophysical Journal, **582**(1), p. L31, 2002.

NS surface - spheroid

Mass (M _☉)	f _{NS} (Hz)	$\begin{array}{c} R_{\rm eq} & R_{\rm pol} \\ (\rm km) & (\rm km) \end{array}$	$\begin{array}{c} R_{\rm eq} & R_{\rm pol} \\ (\rm km) & (\rm km) \end{array}$
		BHF BBB2	GM1 NoHyp
1.4	200 400 600	11.1711.0911.3011.0011.5310.83	14.31 14.10 14.69 13.81 15.36 13.28
1.6	200 400 600	10.9010.8411.0010.7811.1910.67	14.2214.0414.5313.8015.0913.36
1.8	200 400 600	10.43 10.39 10.51 10.36 10.66 10.31	14.07 13.92 14.33 13.73 14.80 13.38
		Small	Big

Sphere vs Ellipsoid vs Spheroid

Model - SL

Model - SL

Model - SL

Emission form Spreading Layer

SL local emissivity:

$$I_{\rm e} = \alpha_2 f(\theta, \sigma_{\rm SL})$$

Obscuration effects

Frequency shift map

Spectral profile

Iron line profile of the system

Disk + SL emission: 50% to 50%

SL simulations

non-equatorial emission from SL

Summary and conclusions

- + I am able to model relativistic spectral profiles from accreting compact object and study the influence of individual components of the system on the resulting spectral profiles.
- Complex model including the radiation of accretion disc and neutron star.
- Consideration of different equation of state of NS with a given mass and spin frequency may result to different spectral signatures.

What is the contribution of emission from the NS surface to the overall flux?

Backup slides

Parameters of this result

 $i = 80^{\circ}$ $\sigma = 100 \text{ eV}$

 $r_{\rm in} = 6 M$ $r_{\rm out} = 60 M$ q = -3

 $M = 1.6 \text{ M}_{\odot}$ $R_{eq} = 11 \text{ km}$ $R_{pol} = 10.8 \text{ km}$ $f_{NS} = 363 \text{ Hz}$ $\beta = 90^{\circ}$ $\gamma = 0^{\circ}$

Backup slide 1

$$e^{-\frac{(E-E_{K_{\alpha}})^2}{2\sigma^2}}$$
$$E_{K_{\alpha}} = 6.4 \text{ keV}$$

е

$$E_{\rm k} = {\rm k}\Delta E + 0.5\Delta E$$

$$\sigma = 15 - 50 \text{ eV}$$

Backup slide 2

What do we see? What information it gives us?

