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Stellar Remnants

Stellar Remnants

The endpoints of stellar evolution can take one of the three forms

White Dwarf (M ≲ 8 M⊙)

Neutron Star (8 M⊙ ≲ M ≲ 20 M⊙)

Black Hole (M ≳ 20 M⊙)
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The endpoints of stellar evolution can take one of the three forms

White Dwarf (M ≲ 8 M⊙)

Neutron Star (8 M⊙ ≲ M ≲ 20 M⊙)

Black Hole (M ≳ 20 M⊙)

Neutron Star

Mass: 1.4-2.5 M⊙

Eq. Radius: 10-15 km

Mean density: 4× 1014 gr/cm3

Frequency: up to 2.2 kHz

The highest masses of observable neutron stars are : Mmax = 2.01 M⊙,
Mmax = 2.14 M⊙, and Mmax = 2.35 M⊙
The fastest observed rotating neutron star is at 716 Hz
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Stellar Remnants

Stellar Remnants

Black Hole (M ≳ 20 M⊙)

Why we study Neutron Stars

They are the most compact stars known to exist in the universe

They have densities equal to that of the early universe

Gravity is similar to that of a black hole

They have the most extreme magnetic fields known in the universe (up to 1016G)

They considered as extraordinary astronomical laboratories for the physics of nuclear
matter

They possibly appear phase transition in to other degrees of freedom (quarks,
hyperons etc.)

They provide a check for General Relativity

They present a unique interplay among astrophysics, gravitational physics and
nuclear physics
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EOS & Neutron stars Cold equation of state

Cold equation of state

Neutron stars

Long-live neutron stars

Protons + Neutrons + Leptons

Cold EOSs

T ≪ 0.01 MeV
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EOS & Neutron stars Hot equation of state

Hot equation of state

Protoneutron stars

Shortly after neutron stars born

Trapped neutrinos

Protons + Neutrons + Leptons

T (MeV) Yl S (kB)

0 - 50 0.01 - 0.4 0 - 10

Hot neutron stars

Heat up by mass accretion due to a companion (Neutron stars merger)

Protons + Neutrons + Leptons

T (MeV) Yl S (kB)

0 - 100 0.01 - 0.6 0 - 100
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EOS & Neutron stars Momentum dependent interaction model

Momentum dependent interaction model

The energy of asymmetric nuclear matter is given by the relation

E(nn, np, T ) = En
kin(nn, T ) + Ep

kin(np, T ) + Vint(nn, np, T ), (1)

kinetic part: En
kin(nn, T ) + Ep

kin(np, T )

interaction part: Vint(nn, np, T )
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EOS & Neutron stars Momentum dependent interaction model

Momentum dependent interaction model

• En
kin(nn, T ) + Ep

kin(np, T )

Eτ
kin(nτ , T ) = 2

∫
d3k

(2π)3
ℏ2k2

2m
fτ (nτ , k, T ), (2)

where the Fermi-Dirac distribution is

fτ (nτ , k, T ) =

[
1 + exp

(
eτ (nτ , k, T )− µτ (nτ , T )

T

)]−1

, (3)

with nucleon density and single particle energy evaluated through

nτ = 2

∫
d3k

(2π)3
fτ (nτ , k, T ), and eτ (nτ , k, T ) =

ℏ2k2

2m
+ Uτ (nτ , k, T ). (4)
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EOS & Neutron stars Momentum dependent interaction model

Momentum dependent interaction model

• Vint(nn, np, T )

Vint(nn, np, T ) = VA + VB + VC , (5)

where

VA =
1

3
Ans

[
3

2
−

(
1

2
+ x0

)
I2
]
u2, (6)

VB =
2
3
Bns

[
3
2
−

(
1
2
+ x3

)
I2
]
uσ+1

1 + 2
3
B′

[
3
2
−

(
1
2
+ x3

)
I2
]
uσ−1

, (7)

VC = u
∑
i=1,2

[
Ci

(
J i

n + J i
p

)
+ I

(Ci − 8Zi)

5

(
J i

n − J i
p

)]
, (8)

ns denotes the saturation density and u = n/ns

I = 1− 2Yp is the asymmetry parameter and Yp is the proton fraction

[A,B,B′, Ci] are the parameters for SNM, [x0, x3, Zi] are the parameters for ANM

J i
τ = 2

∫
d3k

(2π)3
g(k,Λi)fτ (nτ , k, T ) with g(k,Λi) =

[
1 +

(
k
Λi

)2
]−1
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EOS & Neutron stars Momentum dependent interaction model

Momentum dependent interaction model
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Data for SNM
Data for PNM

Properties of NM MDI+APR1 Units

Lsym 77.696 MeV
Qsym 223.061 MeV
Ksym 0.016 MeV
Esym 31.071 MeV
Qs -25.687 MeV
Ks 220.671 MeV
m∗

τ/mτ 0.822

MDI + data from Akmal et al1

1 Cold EOS + nine hot EOSs based on various lepton fractions and entropies per
baryon in the ranges [0.2, 0.4] and [1, 3] kB , respectively.

1 A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998).
2 M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, and R. B. Wiringa, Phys. Rev. C 101, 045801 (2020).
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EOS & Neutron stars Momentum dependent interaction model

Momentum dependent interaction model

Properties of NM MDI+APR1 Experiment Units

Lsym 77.696 40-70 MeV
Qsym 223.061 – MeV
Ksym 0.016 -100±200 MeV
Esym 31.071 30-35 MeV
Qs -25.687 -700±500 MeV
Ks 220.671 230±30 MeV
m∗

τ/mτ 0.822 0.8±0.1

reproduces with high accuracy the properties of SNM

reproduces correctly the microscopic calculations of the Chiral model and the results
of state-of-the-art calculations of Akmal et al1

predicts Mmax at least higher than the observed ones

1 A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998).
2 M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, and R. B. Wiringa, Phys. Rev. C 101, 045801 (2020).
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EOS & Neutron stars Cold neutron star matter

Cold neutron star matter

Matter consists of protons, neutrons and electrons in chemical equilibrium

n ⇆ p+ e−, µn = µp + µe (9)

Proton fraction from β−equilibrium is

µe = µn − µp = − ∂E
∂Yp

∣∣∣∣∣
n

⇒ ∂E
∂Yp

∣∣∣∣∣
n

= −ℏc
(
3π2Ypn

)1/3
(10)

Total energy density

Et(n, Yp) = Eb(n, Yp) +
∑
l

El(n, Yp), (11)

Total pressure

Pt(n, Yp) = Pb(n, Yp) +
∑
l

Pl(n, Yp), (12)

where

Pb(n, T, Yp) = n2 ∂Eb(n, Yp)

∂n
and Pe(n, Yp) =

ℏc
12π2

(
3π2Ypn

)4/3
. (13)
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EOS & Neutron stars Thermodynamics of hot neutron star matter

Thermodynamics of hot neutron star matter

Helmholtz free energy

F (n, T, I) = E(n, T, I)− TS(n, T, I), (14)

Entropy density

sτ (n, T, I) = −g

∫
d3k

(2π)3
[fτ ln fτ + (1− fτ ) ln(1− fτ )] , (15)

Pressure and chemical potentials

P = −∂E

∂V

∣∣∣∣∣
S,Ni

= n2 ∂ (E/n)
∂n

∣∣∣∣∣
S,Ni

, (16)

µi =
∂E

∂Ni

∣∣∣∣∣
S,V,Nj ̸=i

=
∂E
∂ni

∣∣∣∣∣
S,V,nj ̸=i

. (17)
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EOS & Neutron stars Thermodynamics of hot neutron star matter

Isothermal process

Pressure and chemical potentials are connected with the free energy as

P = −∂F

∂V

∣∣∣∣∣
T,Ni

= n2 ∂ (f/n)

∂n

∣∣∣∣∣
T,Ni

, µi =
∂F

∂Ni

∣∣∣∣∣
T,V,Nj ̸=i

=
∂f

∂ni

∣∣∣∣∣
T,V,nj ̸=i

, (18)

The entropy per particle is given through the relation

S(n, T ) = −∂ (f/n)

∂T

∣∣∣∣∣
V,Ni

= −∂F

∂T

∣∣∣∣∣
n

. (19)

The chemical potentials take the form

µn = F + u
∂F

∂u

∣∣∣∣∣
Yp,T

− Yp
∂F

∂Yp

∣∣∣∣∣
n,T

, µp = µn +
∂F

∂Yp

∣∣∣∣∣
n,T

, µ̂ = µn − µp = − ∂F

∂Yp

∣∣∣∣∣
n,T

.

(20)
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EOS & Neutron stars Thermodynamics of hot neutron star matter

Isothermal process

The free energy F (n, T, I) and the internal energy E(n, T, I) can be expressed by the
following parabolic approximations

F (n, T, I) = F (n, T, I = 0) + I2Fsym(n, T ), (21a)

E(n, T, I) = E(n, T, I = 0) + I2Esym(n, T ), (21b)

The key quantity of Eq. (20) can be obtained by using Eq. (21a) as

µ̂ = µn − µp = 4(1− 2Yp)Fsym(n, T ). (22)

It is intuitive to assume, based mainly on Eqs. (21a) and (21b), that the entropy must
also exhibit a quadratic dependence on asymmetry parameter I, that is according to the
parabolic law

S(n, T, I) = S(n, T, I = 0) + I2Ssym(n, T ), (23)

In general: Qsym = Q(n, T, I = 1)−Q(n, T, I = 0), where Q = F,E, S
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EOS & Neutron stars Thermodynamics of hot neutron star matter

Leptons contribution

β decay and electron capture would take place simultaneously as

n −→ p+ e− + ν̄e, and p+ e− −→ n+ νe. (24)

▶ Isothermal process

n + p + e

µn = µp + µe

Yp = Yp(n)

▶ Isentropic process

n + p + e + νe

µn + µνe = µp + µe

Yp = Ye and Yl = Ye + Yνe

key relation

µ̂ = µn − µp = 4(1− 2Yp)Fsym(n, T )

• In isentropic case we consider that: Yp = 2/3Yl + 0.05 within 3% accuracy 3

3 T. Takatsuka, PThPh 95, 901-912 (1996).
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EOS & Neutron stars Thermodynamics of hot neutron star matter

Leptons contribution

The energy density and pressure of leptons are calculated through the following formulas

El(nl, T ) =
2

(2π)3

∫
d3k

√
ℏ2k2c2 +m2

l c
4

1 + exp

[√
ℏ2k2c2+m2

l
c4−µl

T

] , (25)

Pl(nl, T ) =
1

3

2(ℏc)2

(2π)3

∫
1√

ℏ2k2c2 +m2
l c

4
× d3k k2

1 + exp

[√
ℏ2k2c2+m2

l
c4−µl

T

] . (26)
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EOS & Neutron stars Thermodynamics of hot neutron star matter

Equation of state

Total energy density

Et(n, T, Yp) = Eb(n, T, Yp) +
∑
l

El(n, T, Yp), (27)

where
Eb(n, T, Yp) = nFPA + nTSPA. (28)

Total pressure

Pt(n, T, Yp) = Pb(n, T, Yp) +
∑
l

Pl(n, T, Yp), (29)

where

Pb(n, T, Yp) = n2 ∂FPA(n, T, Yp)

∂n

∣∣∣∣∣
T,ni

. (30)
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Isolated non-rotating and maximally-rotating Neutrons stars Equation of state, adiabatic index and speed of sound

Equation of state, adiabatic index and speed of sound

▶ Isentropic Equations of state
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Isolated non-rotating and maximally-rotating Neutrons stars Equation of state, adiabatic index and speed of sound

Equation of state, adiabatic index and speed of sound

▶ Adiabatic index

Γ =
n

P

∂P

∂n

∣∣∣∣
S

(31)
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▶ Speed of sound

cs
c

=

√
∂P

∂E

∣∣∣∣
S

(32)
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Isolated non-rotating and maximally-rotating Neutrons stars Thermal effects on non-rotating neutron stars and the threshold mass

Equation of state, adiabatic index and speed of sound

▶ Mass-radius diagram
Top panel: Nonrotating and Bottom panel: Maximally rotating
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Isolated non-rotating and maximally-rotating Neutrons stars Moment of inertia, kerr parameter and ratio T/W on rotating neutron stars

Moment of inertia, kerr parameter and ratio T/W on rotating neutron stars

The increase of temperature/entropy per baryon, except for some specific cases
(Yl = 0.2, 0.3 and S = 1), leads to lesser compact objects than the cold EOS

For sufficiently compact neutron stars the non-axisymmetric instability will set in
before the mass-shedding limit is reached
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Isolated non-rotating and maximally-rotating Neutrons stars Moment of inertia, kerr parameter and ratio T/W on rotating neutron stars

Moment of inertia, kerr parameter and ratio T/W on rotating neutron stars

K ≡ cJ/(GM2)

Kk ≃ 1.34
√
βmax

7

0.24 ≤ βmax ≤ 0.32 ⇒ 0.66 ≤ Kk ≤ 0.76

�� ��KB.H. ≈ 0.998 8
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Neutron stars bound

7 P.S. Koliogiannis and Ch.C. Moustakidis, Phys. Rev. C 101, 015805 (2020).
8 K.S. Thorne, ApJ 191, 507-520 (1974).
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Isolated non-rotating and maximally-rotating Neutrons stars Moment of inertia, kerr parameter and ratio T/W on rotating neutron stars

Moment of inertia, kerr parameter and ratio T/W on rotating neutron stars
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Neutron stars bound

KN.S. and KB.H. cannot be exceeded as the temperature in neutron stars increasing

The gravitational collapse of a hot, uniformly rotating neutron star, cannot lead to a
maximally rotating Kerr black hole
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Hot rapidly rotating remnant

Hot rapidly rotating remnant

Hot, rapidly rotating remnant: at least S = 1 and Yl = 0.2

βad
rem ≤ 0.27

Kad
rem ≤ 0.68

(T/W )adrem ≤ 0.127

Isentropic EOS - Presented case

object comparable to the one of cold EOS

unstable toward the dynamical instabilities

Isentropic EOS - Rest cases

lesser compact star than the cold EOS, with lower values of maximum gravitational
mass and frequency

more stable toward the dynamical instabilities by increasing S
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Last orbits of an inspiraling binary neutron star system

Last orbits of an inspiraling binary neutron star system

Ralph Wijers, Nature 554, 178-179 (2018)
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Last orbits of an inspiraling binary neutron star system

Last orbits of an inspiraling binary neutron star system

Tidal heating effects are present during the inspiral → heating of the interior of
neutron star

Predictions for temperature: T = 0.01− 10 MeV

To what extent the temperature, due to various mechanisms, affects the values of
the tidal deformability of a neutron star during the inspiral process, just before the
merger

At temperatures T = 0.01− 10 MeV the star’s core is not particularly affected.

Crust is much more sensitive to temperature. However, in the area of the mass size
which is mainly detected by gravitational waves (1.2-1.6 M⊙), the radius and
consequently the tidal deformability, are particularly sensitive to the structure and
size of the crust.
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Last orbits of an inspiraling binary neutron star system

Last orbits of an inspiraling binary neutron star system

▶ Isothermal EOS: LS, Shen, Banik, Steiner

T = 0.01− 1 MeV

LS: T = 10 MeV
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▶ Isothermal EOS: MDI+APR1

T = 0.01− 1 MeV

Yp = 0.1− 0.3
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Last orbits of an inspiraling binary neutron star system

Love number - yR - tidal deformability

k2 and yR → strong sensitivity to the temperature

λ → insensitive to the temperature (especially close to M = 1.4 M⊙)
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T (MeV) k2 R (km) λ (1036gr cm2 s2)

0.01 0.1005 12.21 2.73
0.1 0.0984 12.26 2.73
1 0.0788 12.82 2.73
5 0.0315 15.48 2.79
10 0.0127 18.92 3.02

EOSs: LS, Shen, Banik, Steiner
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Last orbits of an inspiraling binary neutron star system

Love number - yR - tidal deformability

k2 and yR → strong sensitivity to the temperature

λ → insensitive to the temperature (especially close to M = 1.4 M⊙)
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EOS: MDI+APR1
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Last orbits of an inspiraling binary neutron star system

Effective tidal deformability

▶ GW170817

Mc = 1.186 M⊙

▶ GW190425

Mc = 1.44 M⊙
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Almost identical behavior for all the EOSs-families

Thermal effects more pronounced in the GW170817 event → Binary neutron star
mergers with a low value of chirp mass could be more suitable for this kind of study
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Last orbits of an inspiraling binary neutron star system

Isentropic EOSs

S = 0.1− 0.5 kB

Mmax → Temperature has insignificant effect

M1.4 → Increasing temperature leads to increasing radius
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Last orbits of an inspiraling binary neutron star system

Love number - yR - tidal deformability

Temperature has negligible effect on k2, yR → λ

Similar predictions for each value of S
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Last orbits of an inspiraling binary neutron star system

Effective tidal deformability

▶ GW170817

Mc = 1.186 M⊙

▶ GW190425

Mc = 1.44 M⊙
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Isentropic EOSs lead to lower values of Λ̃ than isothermal ones

Binary neutron stars systems with higher value of chirp mass, such as the
GW190425, minimize the differences between the EOSs
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Last orbits of an inspiraling binary neutron star system

Effective tidal deformability and R1.4

GW170817
Isentropic EOSs lie inside the boundaries
Temperature increase → higher radii
Possible constraints on the radius could lead to constraints on the value of the
possibly existing temperature
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Microscopic properties of finite nuclei - GW events

Microscopic properties of finite nuclei - GW events

Relativistic nuclear energy density functionals → DD-PC and DD-ME 9

Terrestrial experiments of nuclear physics: Parity violating electron scattering
experiments → CREX and PREX-II

Constrained microscopic quantities
weak form factors
neutron skin thickness
dipole polarizability

Signal of GW → indicator of phase transition to exotic states of matter

9 Esra Yüksel, Nils Paar, Phys. Lett. B 836, 137622 (2023).
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Microscopic properties of finite nuclei - GW events

Mass-Radius relation
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Microscopic properties of finite nuclei - GW events

Effective tidal deformability
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Microscopic properties of finite nuclei - GW events

Weak form factor

▶ CREX: 48Ca

Fw = 0.1304± 0.052± 0.002
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▶ PREX-II: 208Pb

Fw = 0.368± 0.0132
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Microscopic properties of finite nuclei - GW events

Charged form factor - Weak form factor

▶ CREX: 48Ca

Fch − Fw = 0.0277± 0.0055
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Microscopic properties of finite nuclei - GW events

Neutron skin thickness

▶ CREX: 48Ca

Rnp = 0.121± 0.026 (fm)
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▶ PREX-II: 208Pb

Rnp = 0.283± 0.071 (fm)
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Microscopic properties of finite nuclei - GW events

Dipole polarizability

▶ 48Ca

αD = 2.07± 0.22 (fm3)
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▶ 208Pb

αD = 19.6± 0.6 (fm3)

16 17 18 19 20 21 22 23 24 25
αD

0

100

200

300

400

500

600

700

800

900

1000

Λ
1.

4

GW170817

208Pb

Λ1.4 = 580

Λ1.4 = 70

DD-PC-CREX
DD-PC-J29
DD-PC-J30
DD-PC-J31
DD-PC-J32

DD-PC-J33
DD-PC-J34
DD-PC-J35
DD-PC-J36
DD-PC-PREX

DD-PC-REX
DD-PC1
DD-PCX
DD-ME-J30-K250
DD-ME-J32-K250

DD-ME-J34-K250
DD-ME-J36-K250
DD-ME-J38-K250
DD-ME1
DD-ME2

P.S. Koliogiannis (PMF) EOS in the Multi-messenger Era: Insights from GW August 5-7, 2024 36 / 39



Conclusions

Concluding remarks

As the entropy per baryon and temperature increases for isentropic EOSs, moment
of inertia decreases leading to lower values of torques that the neutron star needs in
order to change its rate of rotation than the cold case.

The endpoint from Kerr parameter is that thermal support cannot lead a star to
collapse into a maximally rotating Kerr black hole.

As the temperature rises, instabilities driven by gravitational radiation would never
occur in a hot, rapidly rotating neutron star.

Temperature manifest significant effects on k2 and yR, but not on λ.

The insensitivity of λ on the temperature applies regardless the EOS.

Accurate measurements of the neutron star’s radius can provide information about
the temperature of the star before the merger.

P.S. Koliogiannis (PMF) EOS in the Multi-messenger Era: Insights from GW August 5-7, 2024 37 / 39



Conclusions

Concluding remarks

▶ Preliminary results on the new constraints for the isolated neutron stars or binary
neutron star system properties

In DD-PC EOSs the CREX favors low symmetry energy, while the PREX-II favors
high values of symmetry energy.

CREX excludes the DD-ME EOSs, even the ones with low symmetry energy, while
PREX-II requires high values of symmetry energy (J = 38 MeV).

In both cases, the dipole polarizability αD favors low values of symmetry energy.
The results are in accordance with the CREX experiment
The results are not consistent to the PREX-II experiment for both DD-PC and DD-ME
EOSs.
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Conclusions

Thank you for your attention!
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